skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cohen, Karly_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Armor is a multipurpose set of structures that has evolved independently at least 30 times in fishes. In addition to providing protection, armor can manipulate flow, increase camouflage, and be sexually dimorphic. There are potential tradeoffs in armor function: increased impact resistance may come at the cost of maneuvering ability; and ornate armor may offer visual or protective advantages, but could incur excess drag. Pacific spiny lumpsuckers (Eumicrotremus orbis) are covered in rows of odontic, cone-shaped armor whorls, protecting the fish from wave driven impacts and the threat of predation. We are interested in measuring the effects of lumpsucker armor on the hydrodynamic forces on the fish. Bigger lumpsuckers have larger and more complex armor, which may incur a greater hydrodynamic cost. In addition to their protective armor, lumpsuckers have evolved a ventral adhesive disc, allowing them to remain stationary in their environment. We hypothesize a tradeoff between the armor and adhesion: little fish prioritize suction, while big fish prioritize protection. Using micro-CT, we compared armor volume to disc area over lumpsucker development and built 3D models to measure changes in drag over ontogeny. We found that drag and drag coefficients decrease with greater armor coverage and vary consistently with orientation. Adhesive disc area is isometric but safety factor increases with size, allowing larger fish to remain attached in higher flows than smaller fish. 
    more » « less
  2. Abstract Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro‐computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species. 
    more » « less
  3. Abstract Complex prey processing requires the repositioning of food between the teeth, as modulated by a soft tissue appendage like a tongue or lips. In this study, we trace the evolution of lips and ligaments, which are used during prey capture and prey processing in an herbivorous group of fishes. Pacus (Serrasalmidae) are Neotropical freshwater fishes that feed on leaves, fruits, and seeds. These prey are hard or tough, require high forces to fracture, contain abrasive or caustic elements, or deform considerably before failure. Pacus are gape‐limited and do not have the pharyngeal jaws many bony fishes use to dismantle and/or transport prey. Despite their gape limitation, pacus feed on prey larger than their mouths, relying on robust teeth and a hypertrophied lower lip for manipulation and breakdown of food. We used histology to compare the lip morphology across 14 species of pacus and piranhas to better understand this soft tissue. We found that frugivorous pacus have larger, more complex lips which are innervated and folded at their surface, while grazing species have callused, mucus‐covered lips. Unlike mammalian lips or tongues, pacu lips lack any intrinsic skeletal or smooth muscle. This implies that pacu lips lack dexterity; however, we found a novel connection to the primordial ligament which suggests that the lips are actuated by the jaw adductors. We propose that pacus combine hydraulic repositioning of prey inside the buccal cavity with direct oral manipulation, the latter using a combination of a morphologically heterodont dentition and compliant lips for reorienting food. 
    more » « less